207 research outputs found

    Testing Foundations of Biological Scaling Theory Using Automated Measurements of Vascular Networks

    Full text link
    Scientists have long sought to understand how vascular networks supply blood and oxygen to cells throughout the body. Recent work focuses on principles that constrain how vessel size changes through branching generations from the aorta to capillaries and uses scaling exponents to quantify these changes. Prominent scaling theories predict that combinations of these exponents explain how metabolic, growth, and other biological rates vary with body size. Nevertheless, direct measurements of individual vessel segments have been limited because existing techniques for measuring vasculature are invasive, time consuming, and technically difficult. We developed software that extracts the length, radius, and connectivity of in vivo vessels from contrast-enhanced 3D Magnetic Resonance Angiography. Using data from 20 human subjects, we calculated scaling exponents by four methods--two derived from local properties of branching junctions and two from whole-network properties. Although these methods are often used interchangeably in the literature, we do not find general agreement between these methods, particularly for vessel lengths. Measurements for length of vessels also diverge from theoretical values, but those for radius show stronger agreement. Our results demonstrate that vascular network models cannot ignore certain complexities of real vascular systems and indicate the need to discover new principles regarding vessel lengths

    Analytical method to measure three-dimensional strain patterns in the left ventricle from single slice displacement data

    Get PDF
    Background: Displacement encoded Cardiovascular MR (CMR) can provide high spatial resolution measurements of three-dimensional (3D) Lagrangian displacement. Spatial gradients of the Lagrangian displacement field are used to measure regional myocardial strain. In general, adjacent parallel slices are needed in order to calculate the spatial gradient in the through-slice direction. This necessitates the acquisition of additional data and prolongs the scan time. The goal of this study is to define an analytic solution that supports the reconstruction of the out-of-plane components of the Lagrangian strain tensor in addition to the in-plane components from a single-slice displacement CMR dataset with high spatio-temporal resolution. The technique assumes incompressibility of the myocardium as a physical constraint. Results: The feasibility of the method is demonstrated in a healthy human subject and the results are compared to those of other studies. The proposed method was validated with simulated data and strain estimates from experimentally measured DENSE data, which were compared to the strain calculation from a conventional two-slice acquisition. Conclusion: This analytical method reduces the need to acquire data from adjacent slices when calculating regional Lagrangian strains and can effectively reduce the long scan time by a factor of two

    Recyclable calix[4]arene–lanthanoid luminescent hybrid materials with color-tuning and color-switching properties

    Get PDF
    Inorganic–organic hybrid materials combine the properties of both components providing functionality with a wide range of potential applications. Phase segregation of the inorganic and organic components is a common challenge in these systems, which is overcome here by copolymerizing a metal-free calixarene ionophore and methyl methacrylate. A lanthanoid ion is then added using a swelling–deswelling procedure. The resulting luminescent hybrid materials can be made to emit any required color, including white light, by loading with an appropriate mixture of lanthanoids. The gradation of the emitted color can also be finely adjusted by changing the excitation wavelength. The polymer monolith can be recycled to emit a different color by swelling with a solution containing a different lanthanoid ion. This methodology is flexible and has the potential to be extended to many different ionophores and polymer matrices

    Hemodynamic Effects of Entry and Exit Tear Size in Aortic Dissection Evaluated with In Vitro Magnetic Resonance Imaging and Fluid-Structure Interaction Simulation

    Full text link
    Understanding the complex interplay between morphologic and hemodynamic features in aortic dissection is critical for risk stratification and for the development of individualized therapy. This work evaluates the effects of entry and exit tear size on the hemodynamics in type B aortic dissection by comparing fluid-structure interaction (FSI) simulations with in vitro 4D-flow magnetic resonance imaging (MRI). A baseline patient-specific 3D-printed model and two variants with modified tear size (smaller entry tear, smaller exit tear) were embedded into a flow- and pressure-controlled setup to perform MRI as well as 12-point catheter-based pressure measurements. The same models defined the wall and fluid domains for FSI simulations, for which boundary conditions were matched with measured data. Results showed exceptionally well matched complex flow patterns between 4D-flow MRI and FSI simulations. Compared to the baseline model, false lumen flow volume decreased with either a smaller entry tear (-17.8 and -18.5 %, for FSI simulation and 4D-flow MRI, respectively) or smaller exit tear (-16.0 and -17.3 %). True to false lumen pressure difference (initially 11.0 and 7.9 mmHg, for FSI simulation and catheter-based pressure measurements, respectively) increased with a smaller entry tear (28.9 and 14.6 mmHg), and became negative with a smaller exit tear (-20.6 and -13.2 mmHg). This work establishes quantitative and qualitative effects of entry or exit tear size on hemodynamics in aortic dissection, with particularly notable impact observed on FL pressurization. FSI simulations demonstrate acceptable qualitative and quantitative agreement with flow imaging, supporting its deployment in clinical studies.Comment: Judith Zimmermann and Kathrin B\"aumler contributed equall
    • …
    corecore